The Corporation of THE CITY OF NORTH VANCOUVER
ENGINEERING, PARKS & ENVIRONMENT DEPARTMENT

REPORT

To: Mayor Linda Buchanan and Members of Council
From: Justin Hall, Manager, Public Realm Infrastructure
Subject: ST. ANDREWS AVENUE SAFETY IMPROVEMENTS PROJECT – RECOMMENDED DESIGN – KEITH ROAD TO 9TH STREET
Date: January 10, 2024

ATTACHMENTS

1. St Andrews Keith to 9th Design Concepts (CityDocs 2455793)
2. Design Comparison Table (CityDocs 2456212)
3. Design Comparison Table Scoring (CityDocs 2455829)
4. St Andrews Keith to 9th Recommended Design (CityDocs 2455738)

SUMMARY

This report presents a design evaluation and comparison process that has resulted in a recommended design to complete the St. Andrews Avenue Safety Improvements Project. The recommended design received the highest cumulative score and had the most beneficial trade-offs for the final street segment between Keith Road and 9th Street.
The comprehensive process involved comparing and evaluating 16 design concepts applying a range of design approaches. The evaluation process was informed by Council feedback and the Mobility Strategy and relied on series of weighted criteria and comparative trade-offs. The final recommended design provides an uphill, on-road mobility lane with mobility device users travelling southbound sharing the road with drivers.

The recommended design proposes six key changes to the street that incorporate feedback received from the community during phase 3 of engagement:
1) Clarify the intersection of St. Andrews Avenue at Keith Road to make transitioning onto the street easier for drivers;
2) Increase sightlines at intersections to improve driver-to-driver and driver-to-pedestrian visibility;
3) Enhance the pedestrian refuge at crossings to clearly delineate where it is safe for pedestrians to look both ways before proceeding to cross the street;
4) Reduce driver speeds by adding one speed bump on each block;
5) Increase the roadway width to provide more comfortable conditions for drivers and downhill cyclists sharing the roadway; and,
6) Add delineators to better define the parking and sightline zones.

BACKGROUND

In July 2020, Council approved a motion to reduce the speed limit on St. Andrews Avenue, between Keith Road and 13th Street, to 30km/h. Vehicle speeds noted after the posted reduction indicated minimal change and it was apparent that design changes to the street were necessary to achieve the safety improvements desired.

The St. Andrews Avenue Safety Improvements Project was launched in spring 2021 with the goal of providing a safer, more comfortable experience for all road users and sought to achieve the following objectives:
1) To fill gaps in the sidewalk network;
2) Align driver speed with the posted 30km/h speed limit; and,
3) Improve mobility facilities.¹

Following a multi-phased engagement process, street design changes were implemented in July 2022. Based on public feedback on the design, staff conducted a subsequent community engagement phase beginning in March 2023. Community feedback was used to inform design revisions and staff sought Council direction to implement the revised design.

At the July 24, 2023 meeting, Council directed staff to implement the revised design from 9th Street to 13th Street and directed staff to explore further design opportunities between Keith Road and 9th Street (Figure 1). The final design from 9th Street to 13th Street was implemented in October 2023.

¹ The Council approved Mobility Network Strategy (2019) established a practice to improve mobility facilities on identified mobility corridors in the City’s Bicycle Master Plan and All ages and Abilities Bicycle Network when delivering other projects (e.g. repaving Brooksbank Avenue incorporated adding mobility lanes)
Council offered the following comments to advise staff on design considerations to explore:

- Elevating the northbound mobility lane to improve clarity of use;
- Reconfiguring the boulevard on the east side of the street to provide an off-street northbound mobility lane and return parked vehicles to the curb;
- Providing protection for southbound mobility device users;
- Corridor couplets to reduce the amount of space needed on any one street for mobility lanes;
- Options for the application of diverters as a traffic calming and vehicle volume management strategy; and,
- Retaining more curbside space to support business access.

Full project background can be found in the compendium report title “St Andrews Safety Improvement Project Background”

DISCUSSION

Following the July 24, 2023 Council meeting, as per Council direction, staff began work to further explore design concepts on St. Andrews Avenue between Keith Road and 9th Street. Comments from Council, in combination with other relevant policy such as the Mobility Strategy, were used to help shape concepts for consideration and establish evaluation criteria to be used to compare the trade-offs between designs.
Council’s comments highlighted a number of possible designs, therefore it was important that the project team to take a comprehensive approach in evaluating all design possibilities to address the more complex challenges of this segment of St. Andrews Avenue. To this end, staff retained an external consultant to join the project team to contribute a valuable external perspective and additional technical expertise. Given the number of possible designs that could conceivably fit the street context, the team developed a multi-phased process to consistently evaluate each possibility to compare trade-offs between them. The following section outlines the approach taken to examine possible designs and evaluate designs against one another to ultimately reach a recommended design.

Design Concept Identification

The project team developed a wide variety of possible designs for consideration utilizing the external consultant to ensure a comprehensive suite of designs were considered. Ultimately, 16 possible designs that could physically fit within the 24 metre right-of-way between the property lines were identified. The concepts incorporated Comfortable for Most mobility infrastructure design approaches that fall into three configuration typologies described below:

- **Neighbourhood Bike Route (Shared Lane)** – Designs that reduce vehicle volumes by incorporating diverters that change neighbourhood access and restrict circulation patterns for drivers;
- **On-road Separated Bike Lane** – Designs that utilize basic materials like paint, curbs, and delineators to protect mobility device users; and,
- **Off-road Separated Bike Lane** – Off-street designs that reconstruct the boulevard to maximize the use of space to accommodate all users.

Figure 3: Comfortable for most mobility facilities
Many concepts that the project team explored incorporated hybrid designs that drew components from multiple infrastructure design approaches divided by the direction of travel (e.g. Off-road facilities on one side of the street and on-road separated facilities on the other or on-road separated facilities paired with a shared lane from a neighbourhood bike route). For ease of classification, hybrid designs were categorized under the typology with the greater level of effort required to deliver (e.g. The off-street and on-road separated facility example mentioned previously would be categorized under the Off-road Separated Bike Lane concepts due to the level of effort associated with reconstructing one side of the street).

Concept design drawings were developed including basic plan-view drawings and typical cross-sections for each possibility. Concept designs illustrate layout with typical dimensions, but do not include details around grading, site specific adjustments to typical dimensions that may be required at pinch points, or other elements like property access that are best addressed through detailed design. All concept designs with annotations describing the features of the design can be found in Attachment 1.

Design Evaluation & Comparison

The project team evaluated each design concept based on a series of weighted criteria informed by the Mobility Strategy and Council feedback. Scores were assigned to each criteria based on whether the design would make the existing conditions\(^2\) better or worse. A cumulative score was calculated enabling the project team to consistently compare trade-offs associated with each concept and highlight the concept with the most favorable outcomes for the context. The Design Comparison Table found in attachments 3 and 4 document the criteria scoring and components of the design that informed each score.

Weighting favoured improvements for vulnerable road users and contextual considerations like curbside access and neighbourhood transportation impacts. Criteria and their weighting used for the evaluation were:

- **User Safety and Comfort (50%)** – A combination of impact on pedestrians (20%), mobility device users (20%), and drivers (10%) including considerations for sightlines, street crossings, user separation and treatments at conflict areas;
- **Parking and Loading (15%)** – Impact on driver access for loading as well as short-term and long-term vehicle parking;
- **Cost (15%)** – Approximate financial cost to deliver the infrastructure;
- **Network Impact (10%)** – Degree of change to the function of St. Andrews Avenue and neighbouring streets; and,
- **Encroachment Impacts (10%)** – Degree of change to private use of public spaces like fences, gardens, decorative trees and other plantings in the City boulevard.

\(^2\) The existing condition consists of a narrowed roadway shared with southbound mobility device users and a parking protected uphill mobility lane defined by paint.
The criteria scoring and explanations informing each score were vetted by multiple technical professionals including the external consulting team to ensure consistent and defensible scoring. The project team performed a series of sensitivity analyses to establish the stability of the cumulative scores. This involved adjusting criteria weighting and criteria scoring up and down to reflect different design priorities to observe the impact to the cumulative score. Changes to criteria weighting and scoring had limited impact on the top designs – some changed positions amongst one another, but the top designs remained the same.

Design Concept Elimination

While all designs evaluated are technically feasible, only concepts that provided greater positive benefits were advanced to a short list. Concepts that did not advance typically had more significant negative impacts to the transportation network or parking with only neutral or modest improvement for people walking and rolling. The remainder of this section will outline the justification for design concepts eliminated in the first round of evaluation.

Concepts 1A, 1A+, 1B, 1B+, 1C, and 1C+

These concepts apply a Neighbourhood Bike Route Design approach by introducing traffic diverters. The diverters would reduce the vehicle volume on St. Andrews Avenue, making slight improvements for the safety and comfort of drivers and cyclists, but would divert vehicle volumes to other streets and restrict travel patterns for residents and visitors traveling in a car. These concepts scored low because:

- They result in higher vehicle volumes on Ridgeway Avenue next to Ridgeway Elementary School which is not a desirable outcome;
- To deliver a Neighbourhood Bike Route design, significant efforts would be required to develop a neighbourhood wide access management plan that incorporates coordinated traffic diversion elements. A successful access management plan would be a considerable change to how drivers access and travel to reach destinations in the neighbourhood. Facilitating neighbourhood level changes exceeds the scope of the St. Andrews Avenue project and staff’s current capacity to deliver effectively.

Concepts 5A and 5B

These concepts reduce the amount of mobility (cycling) infrastructure on any one street by creating a couplet paired with St. Andrews Avenue. St. Andrews Avenue provides separated infrastructure for mobility device users traveling uphill and St Georges Avenue or Ridgeway Avenue provides separated infrastructure for users travelling downhill. These concepts scored low because:

- Couplets are an unfamiliar condition on the North Shore (and regionally) that cyclists may not find easy to navigate. This could lead to wrong-way travel within the facility increasing the risk of an incident;
- With either couplet corridor option the concept requires complete parking removal on one side of the street; and
• Concept 5A on St Georges Avenue requires changes to intersection operations (e.g. restricting right turns) causing other network impacts or significant costs to protect users at intersections.

<table>
<thead>
<tr>
<th>Eliminated Design Concepts (shaded cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
</tr>
</tbody>
</table>

Low scoring On-Road and Off-Road Separated Concepts
This series of concepts yielded low scores with more competitive concepts developed within each design typology category.

• Concept 2 – Eliminates driver queuing by widening the travel-way to establish dedicated north- and southbound travel lanes. This is achieved through the removal of parking on the west side. A northbound mobility lane is provided and southbound mobility device users are directed to share the southbound travel lane with drivers. This concept scored low due to the impacts to parking with only marginal comfort and safety improvements.

• Concept 6 – Builds a new curb on the east side of the street to shift the northbound mobility lane off-road. While providing some improvement to people walking and rolling by establishing a separate space for mobility devices off-road, it did not score well because the cost to deliver the design is high.

• Concept 9 – Creates a bi-directional off-road mobility lane on the east side of the street. This concept did not score well because it introduces safety and navigational challenges for cyclists, significantly impacts private encroachments on one side of the street, and is expensive to implement.

<table>
<thead>
<tr>
<th>Eliminated Design Concepts (shaded cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
</tr>
</tbody>
</table>

Concept 8
Provides a downhill off-road mobility lane on the west side of the street and a northbound on-road parking protected mobility lane through the reconstruction of the west side boulevard. The design improves the comfort and safety of all users and particularly mobility device users traveling downhill. To achieve the off-road downhill mobility lane parking is eliminated south of the laneway on the 700 block and further restrictions to parking north of the laneway on the west side are required. While performing well for cycling safety this concept did not make the short list because:

• Significant impacts to parking and loading space;
• High costs to deliver the work ($1-$1.25 million); and
• Relatively high impacts to private encroachments in the boulevard.

<table>
<thead>
<tr>
<th>Eliminated Design Concepts (shaded cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
</tr>
</tbody>
</table>
Concept 4
Provides on-road separated bike lanes both uphill and downhill resulting in high user comfort and safety scores. This is achieved by removing all parking on the west side and partial parking removal on the east side. This design is a cost effective option to deliver a downhill protected mobility lane, but did not make the short list because it requires significant parking removal.

<table>
<thead>
<tr>
<th>Eliminated Design Concepts (shaded cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
</tr>
</tbody>
</table>

Design Concept Short List
The three remaining design concepts all received similar cumulative scores. Breaking down how the scores were reached reveals variations in trade-offs and design priorities between them. The greatest variations exist between the design concept costs, as well as pedestrian and cycling safety and comfort.

Table 1: Condensed table of the short listed design concepts.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>ON-ROAD SEPARATED BIKE LANE</th>
<th>OFF-ROAD SEPARATED BIKE LANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concept 3</td>
<td>Concept 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>NB Off-road Separated Bike Lane, SB On-road Separated Bike Lane</td>
</tr>
<tr>
<td>Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>20</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>10</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>15</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>15</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>Cost</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>10</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>Cumulative Score</td>
<td>100</td>
<td>65</td>
<td>55</td>
</tr>
</tbody>
</table>

To reach a recommended design, staff applied three assumptions to establish the trade-offs that were most beneficial for the context. Those assumptions were:
- The Mobility Strategy design objectives for a local street emphasize making streets more family-friendly by improving the comfort and safety of walking and rolling; in the context of the 700 and 800 blocks of St. Andrews Avenue providing parking has an elevated priority for street design.
Substantial changes to the neighbourhood street network or private encroachments like removing fences, hedges, and decorative plantings would be impactful; this is not necessary to deliver mobility network improvements in this context and should be avoided.

St Andrews is not a Mobility Network priority and a more complete corridor approach could happen in the future. While the St. Andrews Avenue corridor offers a north-south connection through the City; the Mid-town and Chesterfield Corridors have much higher existing mobility device user volumes and further investment will yield greater progress toward increasing the City’s 50% active mode share target by 2030 identified in the Mobility Strategy.

When these assumptions are applied, two concepts can be eliminated to establish a recommended design.

Concept 10
Delivers an off-road separated mobility lane in both directions, similar to Esplanade, requiring the complete reconstruction of the right-of-way between the property lines. The design receives the highest comfort and safety scores by creating separate travel spaces for all modes with limited impact to parking. The design was not recommended because:

- It would cause a substantial change to private encroachments on both sides of the street, which is not required to deliver mobility network improvements in this context; and
- Implementation requires an expenditure of approximately $2,000,000 to construct. This design would improve the comfort and safety of cyclists on the corridor, but is unlikely to yield the equivalent progress toward increasing the City’s active mode share as the Mid-town or Chesterfield Corridors.

Concept 7
Delivers an off-road separated mobility lane uphill and an on-road parking protected mobility lane downhill. The design requires the reconstruction of the east boulevard and the removal of some parking on the west side on the 700 block north of the lane to improve sightlines for downhill cyclists. This design was not recommended because:

- It would cause substantial change to private encroachments, which is not required to deliver mobility network improvements in this context; and
- Implementation requires an expenditure of approximately $1,250,000 to construct. This design would improve comfort and safety of cyclists on the corridor, but is unlikely to yield the equivalent progress toward increasing the City’s active mode share as the Mid-town or Chesterfield Corridors.

Recommended Design – Concept 3
This concept is consistent with the design applied to St. Andrews Avenue from 9th to 13th Street. It provides an uphill on-road parking protected mobility lane and incorporates
changes in response to the feedback from the community received throughout the engagement process. The project team recommends advancing this option as it:

- Improves the comfort and safety of pedestrians by creating a paint defined pedestrian refuge to improve visibility when crossing.
- Improves the comfort and safety of cyclists and other mobility device users by better defining the mobility lane from the parking area with delineators and increasing the travel way to create more space for downhill cyclists and drivers to pass one another.
- Responds to aesthetic concerns by adding a planting in the transition zone on St. Andrews Avenue at Keith.
- Is consistent with the design delivered on St. Andrews Avenue between 9th and 13th Streets.
- Is aligned with City Policy and design best practices.
- Incorporates the key recommendations from the design peer review.
- Is a cost effective design to deliver safety improvements appropriate for the context.

Five key changes identified below would be made to the 700 and 800 blocks to the street design to address the community’s main concerns. For a complete view of the design, please see Attachment 5.

1) Clarify the Keith Road and St. Andrews Avenue Intersection (Figure 4) – The design incorporates concrete barriers, signage and paint to improve legibility of the transition to the street. Staff will explore options for further aesthetic improvements including a planting bed as a gateway feature to the neighbourhood. The lateral shift of the road has been reduced and the centre line extended to the lane to create a distinct north and southbound travel lane.

Figure 4: Summary of recommended design changes to improve the Keith and St Andrews intersection
2) Improve Sightlines (Figure 5) – Sightlines at intersections of streets and laneways have been adjusted to increase visibility. For pedestrians standing on the curb edge on the east side of the street, their visibility has improved by 100% or more at all intersections compared to the original street design. For drivers, intersection sightlines have improved between 16-30% and at the 8th Street and St. Andrews Avenue intersection sightlines on the south side of the traffic circle have been improved by 75%. At laneways, driver to driver sightlines have improved by between 12-20%. The tradeoff for improving sightlines has been a minor reduction in available street parking space on some blocks resulting in the reduction of one vehicle parking space. Changes that reduce available street parking to improve sightlines were not supported by the majority of 2023 survey respondents, however, those living further away from the street indicated more support for this trade-off and assigning greater value to improved sightlines. Parking space reduction has been performed thoughtfully with guidance features incorporated to ensure available space can be maximally utilized.

3) Enhancing the pedestrian refuge at crossings (Figure 6) – On the east side of the street the pedestrian refuge outside of the vehicle wheel path will be highlighted with paint and delineators to clearly denote a safe space for pedestrians to stand and be visible to drivers when crossing the street. The visibility of pedestrians utilizing the refuges improves by 57% compared to their visibility at the curb (which has also been improved as noted in design change #2). In combination with improving sightlines this action positively responds to feedback in improving the visibility of pedestrians at intersections.
Figure 6: Improvements to pedestrian crossing refuge at the intersection of St. Andrews Avenue at 8th Street

4) Add Speedbumps (Figure 7) – Speedbumps will be added to each block in response to community feedback to help slow drivers.

Figure 7: New speed hump added. Placement varies block to block to maintain 60m separation to other driver speed management features

5) Increase the roadway width (Figure 8) – The mobility lane will be reduced from 2.2 metres to 1.8 metres plus buffer (which meets minimum standard in the design guidelines) to reallocate the space to the shared roadway. This is in response to drivers and downhill mobility device users feeling constrained using the street. This
change will offer more space, but continue to be aligned with the upper end of the best practice widths for a shared street. The tradeoff means the mobility device users in the uphill parking protected lane will not have as much space in the lane to pass slower moving users however there will be no increased risk of dooring with an adequate door zone buffer retained.

Figure 8: Roadway width adjustment

6) Add delineators to better define parking and sightline zones (Figure 9) – Delineators will be added within the door zone buffer and at sightline triangles. Feedback indicated that when parked cars are not present drivers have been observed using the parking and sightline space as driving lanes. Added delineators will give drivers a reference point to assist them in parking in the correct location. This will also prevent incorrectly parked vehicles from obstructing sightlines and better define the roadway when no cars are parked on the road.

Figure 9: Adjustments to improve parking efficiency and clarify separation between parking and mobility lane.
Communicating Next Steps
Per the City’s current practices, the project team will inform community (through established channels) to share how their feedback has been incorporated into the final design and the path forward. Before any changes to the street are made, interested parties will be provided with information on the expected construction activities and impacts. The project team will keep the community informed throughout the change process.

Community input has been considered along with City policy, industry standards and physical constraints of the roadway. The resulting options were carefully analyzed using weighted criteria. While the recommended option best meets the community’s needs, staff acknowledge the recommended changes may not satisfy all interested parties in the neighbourhood. Staff welcome feedback as part of the ongoing monitoring process focused on the new changes to the street, but will not be able to maintain dialogue on subjects previously addressed or where there is information readily available.

Implementation Timeline
Should Council direct staff to proceed with the recommended option, staff will schedule implementation as weather and contractor availability permits in 2024. Post implementation, the project team will continue to monitor the street to ensure changes to the street have effectively addressed feedback received during the re-engagement process.

FINANCIAL IMPLICATIONS
Staff anticipate that implementation of the recommended design will cost approximately $40,000. Staff will continue to pursue external funding options to reduce the project costs associated with design implementation from Keith Road to 9th Street. CNV’s Council approved 2023-2027 Financial Plan includes $1,645,000 of CNV funding for a Priority Mobility Networks Improvements project. Funding to deliver the recommended design will also be incorporated into the 2024-2028 Financial Plan for Council's further consideration.

INTER-DEPARTMENTAL IMPLICATIONS
The Communications and Engagement and Public Realm Infrastructure Teams work in partnership to support the St. Andrews Avenue project. This partnership ensures all components of the project, design, construction and engagement are delivered utilizing best practices and remaining consistent with the City’s standard approach to projects.

The City's Fire department has been engaged on the updated design to ensure revisions minimize impacts on their mobility and to ensure response times are met.

STRATEGIC PLAN, OCP OR POLICY IMPLICATIONS
This project supports the Council Strategic Plan goal of a “Connected City,” providing active and sustainable ways for people to move to, from and within the City safely and
efficiently by increasing the number of kilometers of protected bike lanes. In addition, the project aligns with and advances policy objectives in the Mobility Strategy, including:

- Action 1A: Deliver a complete, accessible, and high-quality pedestrian network;
- Action 1B: Deliver a AAA Mobility Lane Network that connects all our neighbourhoods and key destinations;
- Action 5B: Manage travel speeds and access to improve neighbourhood safety and livability;
- Action 5D: Make it easier for everyone to be seen while travelling; and
- Action 6B: Ensure there are sufficient loading zones, pick-up and drop-off zones, and accessible parking spots in high-demand locations.

The St. Andrews Avenue Safety Improvement project is consistent with the goals and objectives in the City's Official Community Plan, specifically Chapter 2, (Transportation, Mobility and Access) – 2.1.1 Invest in cycling and pedestrian networks and facilities to make these more attractive, safer, and convenient transportation choice for all ages and abilities with an aim to increase these ways of travelling over single-occupant vehicle use.

RESPECTFULLY SUBMITTED:

Justin Hall
Manager, Public Realm Infrastructure
Council offered the following comments to advise staff on design considerations to explore:

- Elevating the northbound mobility lane to improve clarity of use;
- Reconfiguring the boulevard on the east side of the street to provide an off-street northbound mobility lane and return parked vehicles to the curb;
- Providing protection for southbound mobility device users;
- Corridor couplets to reduce the amount of space needed on any one street for mobility lanes;
- Options for the application of diverters as a traffic calming and vehicle volume management strategy; and,
- Retaining more curbside space to support business access.

DISCUSSION

Following the July 24, 2023 Council meeting, as per Council direction, staff began work to further explore design concepts on St. Andrews Avenue between Keith Road and 9th Street. Comments from Council, in combination with other relevant policy findings, will inform further design development.

CONCEPT 1A – Diverter Across NE to SW

Impacts:
- Northbound traffic (580 vpd (+60 vph)) may divert all or a portion of drivers onto Ridgeway.
- Southbound traffic (550 vpd (+60 vph)) may divert drivers to St Georges or Ridgeway depending on desired destination.
- East-west streets and lanes to see increased vehicle volumes.
- Additional South and Northbound volume on Ridgeway would increase traffic volume over the desired 1,000 vpd on a local street.
- Impact would be most pronounced during school pick-up and drop-off times adjacent to Ridgeway Elementary.
- Deters potential shortcut route of drive avoiding southbound congestion on St Georges at Keith Rd.

Assumptions / Limitations
- Traffic volume information based on weekday counts from 2022 & 2023.
- Driver route choice is difficult to predict without more sophisticated modeling. Drivers may redirect to specific routes or redistribute throughout the neighbourhood based on their point of origin or destination.

![Map showing proposed diverter concept and assumptions/limitations]

Proposed Diagonal Diverter

Existing: ~1,000 vpd

Diagonal Diverter

Existing: ~1,000 vpd
CONCEPT 1B – Diverter Across NW to SE

Impacts:
- Northbound traffic (580vpd (+60vph)) may divert all or a portion drivers onto Ridgeway.
- Southbound traffic (550vpd (+60vph)) may divert drivers to St Georges or Ridgeway depending on desired destination.
- East-west streets and lanes to see increased vehicle volumes.
- Possible eastbound short cut to bi-pass the St Georges and Keith intersection remains.
- Additional South and Northbound volume on Ridgeway would increase traffic volume over the desired 1,000vpd on a local street.
- Impact would be most pronounced during school pick-up and drop-off times adjacent to Ridgeway Elementary.

Assumptions / Limitations
- Traffic volume information based on weekday counts from 2022 & 2023.
- Driver route choice is difficult to predict without more sophisticated modeling. Drivers may redirect to specific routes or redistribute throughout the neighbourhood based on their point of origin or destination.
Add traffic diverter. Reduces vehicular traffic volumes through St Andrews Ave.

Provides uphill separated bike lane and downhill shaped lane; separates slow moving uphill cyclists from faster vehicles.

At 3m/s we are able to accommodate two-way passing, making navigation in the discomfortable for drivers.
Assumptions / Limitations
- Driver route choice is difficult to predict without more sophisticated modeling.
- Drivers may redirect to specific routes or redistribute throughout the neighbourhood based on their point of origin or destination.

CONCEPT 1C – Through Restriction At E Keith Rd
Impacts:
- Redistribution of vehicle volume (650 vpd) from neighbourhoods north and south of Keith will increase volume on Ridgeway and St Georges.
- St Georges and East Keith intersection is currently at capacity. Additional queues can be expected during peak hours.
- Additional volume on Ridgeway would increase traffic volume over the desired 1,000vpd on a local street.
- Impact would be most pronounced during school pick-up and drop-off times adjacent to Ridgeway Elementary. Queues may occur during peak hour at the Ridgeway and East Keith Road intersection trying to enter and exit the neighbourhood.
- East-west streets and lanes to see increased vehicle volumes.
- Deters potential shortcut route of driver avoiding southbound congestion on St Georges at Keith Rd.
Provides downhill shared lane. Increases comfort sharing travel lane due to wider drive aisle and no west side parking; more room to pass and eliminates door zone risk.

Widens drive aisle to accommodate two-wayExisting, making navigation more comfortable for drivers, higher potential to increase vehicle speeds with 4 parking on one side.

Provides wider separated bikeway; adds flexible delineators to clarify parking areas and bike lanes.
REPORT: St. Andrews Avenue Safety Improvements Project - Recommended Design - Keith Road to 9th Street

Date: January 2023

In combination with the above changes, the bike lane will be lengthened by 300 feet at the intersection of Rainbow Crescent to improve the parked vehicle sightlines to the on-street parking (which has also been improved as noted in design change #2). In combination with the above changes, the pedestrian refuge islands at the intersection of Rainbow Crescent will be improved by increasing the width of the sidewalk by one foot, and the pedestrian safety zone will be improved by adding a pedestrian safety zone at the intersection of Rainbow Crescent.

CONCEPT 5:

CYCLING COUPLET

- Further from Key Destinations (i.e. into Shipyard District)
- Narrow ex. roadway width would require parking removal on one side for dedicated mobility lane
- Protection required around school to avoid drivers parking in the bike lane

DOWNHILL MOBILITY LANE – CONCEPT 5A

- Located on Minor Arterial
- Ex. roadway width would require parking removal on one side and auxiliary lanes at intersections for dedicated mobility lane

FUTURE FACILITY PROPOSED

EXISTING UPHILL MOBILITY LANE

CONCEPT 5:

DOWNHILL MOBILITY LANE – CONCEPT 5B

- Further from Key Destinations (i.e. into Shipyard District)
- Narrow ex. roadway width would require parking removal on one side for dedicated mobility lane
- Protection required around school to avoid drivers parking in the bike lane
Provides downhill shared lanes.

Provides - all on road
separating bike lane
improves - safety of road
design by raising bike lane
to above grade height.
This drawing is prepared for the sole use of "the Client." Urban Systems Ltd. makes no representations and shall bear no responsibility for or liability in contract or tort, in the event of their failure to comply with the above.

Professional Seals

City of North Vancouver

Utilities or structures shown on this drawing were compiled from information supplied by other sources and may not be complete or accurate at the time of review. It is the sole responsibility of any party making use of this drawing to expose and conclusively confirm whether in contract or tort, in the event of their failure to comply with the above.

Sheet Number

Drawn by

NOT FOR CONSTRUCTION

ST ANDREWS AVENUE 700-800 BLOCKS
NORTH OF LANEWAY
CONCEPT 7

SCALE 1:100

Issued for Conceptual Plans
2024-01-09
urbansystems.ca
Removes parking on the east side south of the laneway.

Removes small trees and boulevard landscaping.

Reduces curb access in front of the house row.

Relocates encroaching fence to property line within close proximity to residential entrances.

Provides uphill on-road separated bike lane and flexible delineators to highlight parking areas and bike lane.

Removes traffic circle and introduces two-way stop control. Rebuilds laneway access.

SOURCES
Responsibility of any party making use of this drawing to expose and conclusively confirm responsibility or duty in law for loss or damage to any party, whether in contract or tort, in the event of their failure to comply with the above.

ISSUED FOR CONCEPTUAL PLANS 2024-01-09 urbansystems.ca

ST ANDREWS AVENUE 700-800 BLOCKS
NORTH OF LANEWAY CONCEPT 8
SCALE 1:100

NO Construction

NOT FOR CONSTRUCTION
Southbound cyclists need to use crossing to continue on the correct side of the street.

C.WAN

ISSUED FOR CONCEPTUAL PLANS
2024-01-09
urbansystems.ca

North and southbound cyclists need to use crossing to access off-road infrastructure.
NEIGHBOURHOOD BIKE ROUTE - SHARED TRAVEL LANE

Criteria

<table>
<thead>
<tr>
<th>Concept 1A</th>
<th>Concept 1A+</th>
<th>Concept 1B</th>
<th>Concept 1B+</th>
<th>Access Restriction at E Keith Rd, Dedicated Travel Lanes in Both Directions Shared by Drivers and Cyclists</th>
<th>Access Restriction at E Keith Rd, NB On-road Separated Bike Lane Maintained, SB Cyclists Share with Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverter Across NE to SW at E 8th St, Dedicated Travel Lanes in Both Directions Shared by Drivers and Cyclists</td>
<td>Diverter Across NW to SE at E 8th St, SB Cyclists Share with Drivers</td>
<td>Diverter Across NW to SE at E 8th St, NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>Diverter Across NW to SE at E 8th St, SB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>Access Restriction at E Keith Rd, Dedicated Travel Lanes in Both Directions Shared by Drivers and Cyclists</td>
<td>Access Restriction at E Keith Rd, NB On-road Separated Bike Lane Maintained, SB Cyclists Share with Drivers</td>
</tr>
</tbody>
</table>

Pedestrian Safety and Comfort

- **Concept 1A**:
 - Namely reduces crossing distance at 8th St
 - Improves visibility at crossings by increasing parking setbacks
 - Reduces vehicular traffic volumes through St Andrews Ave; results in fewer veh/ped interactions and increases pedestrian comfort

- **Concept 1A+**:
 - Namely reduces crossing distance at 8th St
 - Improves visibility at crossings by increasing parking setbacks
 - Reduces vehicular traffic volumes through St Andrews Ave; results in fewer veh/ped interactions and increases pedestrian comfort

- **Concept 1B**:
 - Namely reduces crossing distance at 8th St
 - Improves visibility at crossings by increasing parking setbacks
 - Reduces vehicular traffic volumes through St Andrews Ave; results in fewer veh/ped interactions and increases pedestrian comfort

- **Concept 1B+**:
 - Namely reduces crossing distance at 8th St
 - Improves visibility at crossings by increasing parking setbacks
 - Reduces vehicular traffic volumes through St Andrews Ave; results in fewer veh/ped interactions and increases pedestrian comfort

Cycling Safety and Comfort

- **Concept 1A**:
 - Provides shared travel lane in both directions
 - Reduces comfort for slow moving uphill cyclists by requiring them to share the travel lane with drivers
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

- **Concept 1A+**:
 - Provides shared travel lane in both directions
 - Reduces comfort for slow moving uphill cyclists by requiring them to share the travel lane with drivers
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

- **Concept 1B**:
 - Provides shared travel lane in both directions
 - Reduces comfort for slow moving uphill cyclists by requiring them to share the travel lane with drivers
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

- **Concept 1B+**:
 - Provides shared travel lane in both directions
 - Reduces comfort for slow moving uphill cyclists by requiring them to share the travel lane with drivers
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

Driving Safety and Comfort

- **Concept 1A**:
 - Provides uphill separated bike lane and downhill shared lane
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

- **Concept 1A+**:
 - Provides uphill separated bike lane and downhill shared lane
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

- **Concept 1B**:
 - Provides uphill separated bike lane and downhill shared lane
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

- **Concept 1B+**:
 - Provides uphill separated bike lane and downhill shared lane
 - Reduces vehicle traffic volumes with diverter; increases comfort for sharing travel lane due to fewer interactions
 - Increases visibility of uphill cyclists due to parking removal near intersections

Network Impacts

- **Concept 1A**:
 - Improves visibility at lanes and intersections
 - Speed reduction benefits from additional speed humps

- **Concept 1A+**:
 - Improves visibility at lanes and intersections
 - Speed reduction benefits from additional speed humps

- **Concept 1B**:
 - Improves visibility at lanes and intersections
 - Speed reduction benefits from additional speed humps

- **Concept 1B+**:
 - Improves visibility at lanes and intersections
 - Speed reduction benefits from additional speed humps

Cost

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Concept 1A</th>
<th>Concept 1A+</th>
<th>Concept 1B</th>
<th>Concept 1B+</th>
<th>Access Restriction at E Keith Rd, Dedicated Travel Lanes in Both Directions Shared by Drivers and Cyclists</th>
<th>Access Restriction at E Keith Rd, NB On-road Separated Bike Lane Maintained, SB Cyclists Share with Drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mls aide to accommodate two-way passing, making navigation more comfortable for drivers</td>
<td>Drive way does not accommodate two-way passing north of laneway</td>
<td>Drive way does not accommodate two-way passing north of laneway</td>
<td>Drive way does not accommodate two-way passing north of laneway</td>
<td>Drive way does not accommodate two-way passing north of laneway</td>
<td>Drive way does not accommodate two-way passing north of laneway</td>
<td></td>
</tr>
<tr>
<td>Improves visibility at laneways and intersections</td>
<td></td>
</tr>
<tr>
<td>Speed reduction benefits from additional speed humps</td>
<td></td>
</tr>
</tbody>
</table>

Parking and Loading

- Concept 1A: Increases parking minimally on both sides
- Concept 1A+: Removes parking minimally on east side to improve visibility at intersections
- Concept 1B: Increases parking minimally on both sides
- Concept 1B+: Removes parking minimally on both sides to improve visibility at intersections

Encroachment Impacts

- None

Cost

- Concept 1A: Mls aide to accommodate two-way passing, making navigation more comfortable for drivers
- Concept 1A+: Improves visibility at laneways and intersections
- Concept 1B: Speed reduction benefits from additional speed humps
- Concept 1B+: Speed reduction benefits from additional speed humps

Cost

- Mls aide to accommodate two-way passing, making navigation more comfortable for drivers
- Improves visibility at laneways and intersections
- Speed reduction benefits from additional speed humps
- Speed reduction benefits from additional speed humps

Cost

- Mls aide to accommodate two-way passing, making navigation more comfortable for drivers
- Improves visibility at laneways and intersections
- Speed reduction benefits from additional speed humps
- Speed reduction benefits from additional speed humps

Cost

- Mls aide to accommodate two-way passing, making navigation more comfortable for drivers
- Improves visibility at laneways and intersections
- Speed reduction benefits from additional speed humps
- Speed reduction benefits from additional speed humps
Attachment 2 - Design Comparison Table Scoring Descriptions

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Concept 2</th>
<th>Concept 3</th>
<th>Concept 4</th>
<th>Concept 5</th>
<th>Concept 5A</th>
<th>Concept 5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Features</td>
<td>Reduces crossing distance on east side of the street with paint and delineators at 8th St</td>
<td>Reduces crossing distance on both sides of the street with paint and delineators at 8th St</td>
<td>Reduces crossing distance on east side of the street with paint and delineators at 8th St</td>
<td>Reduces crossing distance on both sides of the street with paint and delineators at 8th St</td>
<td>Reduces crossing distance on both sides of the street with paint and delineators at 8th St</td>
<td>Reduces crossing distance on both sides of the street with paint and delineators at 8th St</td>
</tr>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>Improves visibility by crossings by increasing parking setbacks on east side, and parking removal on west side</td>
<td>Improves visibility by crossings by increasing parking setbacks on east side, and parking removal on west side</td>
<td>Improves visibility by crossings by increasing parking setbacks on east side, and parking removal on west side</td>
<td>Improves visibility by crossings by increasing parking setbacks on east side, and parking removal on west side</td>
<td>Improves visibility by crossings by increasing parking setbacks on east side, and parking removal on west side</td>
<td>Improves visibility by crossings by increasing parking setbacks on east side, and parking removal on west side</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>Removes parking along west side; no curbside access directly in front of heritage residences and businesses on west side of St Andrews Ave</td>
<td>Removes parking along west side, and part of east side; no curbside access directly in front of heritage residences and businesses on west side of St Andrews Ave</td>
<td>Removes parking along west side, and part of east side; no curbside access directly in front of heritage residences and businesses on west side of St Andrews Ave</td>
<td>Removes parking along west side, and part of east side; no curbside access directly in front of heritage residences and businesses on west side of St Andrews Ave</td>
<td>Removes parking along west side, and part of east side; no curbside access directly in front of heritage residences and businesses on west side of St Andrews Ave</td>
<td>Removes parking along west side, and part of east side; no curbside access directly in front of heritage residences and businesses on west side of St Andrews Ave</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>Low cost with road space reallocation Approx: $30,000 - $50,000</td>
<td>Low cost with road space reallocation Approx: $30,000 - $50,000</td>
<td>Moderate cost with removal of traffic circle and road space reallocation Approx: $100,000 - $200,000</td>
<td>High cost with construction of on-road separated bike lane on arterial roadway, removal of concrete curb extensions, and relocation of pedestrian signal poles (from Keith Rd to 13th St) Approx: $500,000 - $1,000,000</td>
<td>Moderate cost with road space reallocation, traffic circle removal, and improvement along both St Andrews and Ridgeway Ave (from Keith Rd to 13th Street) Approx: $250,000 - $500,000</td>
<td>Moderate cost with road space reallocation, traffic circle removal, and improvement along both St Andrews and Ridgeway Ave (from Keith Rd to 13th Street) Approx: $250,000 - $500,000</td>
</tr>
<tr>
<td>Cost</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Enforcement Impacts</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
OFF-ROAD SEPARATED BIKE LANE

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Concept 6</th>
<th>Concept 7</th>
<th>Concept 8</th>
<th>Concept 9</th>
<th>Concept 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety and Comfort</td>
<td>NB Off-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>NB Off-road Separated Bike Lane, SB On-road Separated Bike Lane</td>
<td>NB On-road Separated Bike Lane, SB Off-road Separated Bike Lane</td>
<td>Bi-directional Off-road Separated Bike Lane on East Side</td>
<td>NB and SB Off-road Separated Bike Lanes</td>
</tr>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>Reduces crossing distance on both sides of the street with concrete curb extensions at majority of intersections</td>
<td>Reduces crossing distance on both sides of the street with concrete curb extension and paint and delineators</td>
<td>Improves visibility at crossings by increasing parking setbacks</td>
<td>Reduces crossing distance on east side with concrete curb extension at 8th St</td>
<td>Reduces crossing distance on both sides of the street with concrete curb extension at majority of intersections</td>
</tr>
<tr>
<td></td>
<td>Increases comfort by adding new side sidewalk on east side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>Provides uphill off-road separated bike lane, and downhill off-road separated bike lane</td>
<td>Provides uphill on-road separated bike lane and downhill off-road separated bike lane</td>
<td>Provides bi-directional off-road separated bike lane on east side</td>
<td>Provides uphill and downhill off-road separated bike lanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increases visibility of uphill cyclists due to parking removal near intersections</td>
<td>Downhill bike lane has some jogs in it which might be less comfortable for some cyclists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improves visibility at crossings by increasing parking setbacks</td>
<td>Increases visibility of uphill cyclists due to parking removal near intersections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>Drive aisle does not accommodate two-way passing north of laneway</td>
<td>Drive aisle does not accommodate two-way passing north of laneway</td>
<td>Drive aisle does not accommodate two-way passing north of laneway</td>
<td>Drive aisle does not accommodate two-way passing north of laneway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improves visibility at laneways and intersections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed reduction benefits from additional speed humps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>Removes parking minimally on east side to improve visibility at intersections</td>
<td>Removes some parking along west side to improve sightlines for southbound cyclists approaching intersections and laneways</td>
<td>Removes some parking along west side and part of east side; Reduces curbside access directly in front of heritage residences and businesses on west side of St Andrews</td>
<td>Removes parking minimally on east side to improve visibility at intersections</td>
<td>Removes parking minimally on east side to improve visibility at intersections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>High cost with rebuild on the east side</td>
<td>Highest cost with rebuild on both sides</td>
</tr>
<tr>
<td></td>
<td>Approx: $1,000,000 - $1,250,000</td>
<td>Approx: $1,000,000 - $1,250,000</td>
<td>Approx: $1,000,000 - $1,250,000</td>
<td>Approx: $1,000,000 - $1,250,000</td>
<td>Approx: $1,500,000 - $2,000,000</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>Provides a direct connection between existing bike facilities north of E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of E Keith Rd and on E Keith Rd</td>
<td>Provides a direct connection between existing bike facilities north of 9th St and on E Keith Rd</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>None</td>
<td>Removes small trees and boulevard landscaping</td>
<td>Relocates sidewalk within close proximity of property line</td>
<td>Relocates residential fence to property line, within close proximity to residential entrances. Removes small trees and boulevard landscaping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 3 - Design Comparison Table Scoring

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>Concept 1A</th>
<th>Concept 1A+</th>
<th>Concept 1B</th>
<th>Concept 1B+</th>
<th>Concept 1C</th>
<th>Concept 1C+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>15</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Cost</td>
<td>15</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>10</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cumulative Score</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Criteria Weighting

- **Pedestrian Safety and Comfort**: 20
- **Cycling Safety and Comfort**: 20
- **Driving Safety and Comfort**: 10
- **Parking and Loading**: 15
- **Cost**: 15
- **Network Impacts**: 10
- **Encroachment Impacts**: 10

Score Interpretation

- **Worse**: -4
- **Neutral**: 0
- **Better**: +4
Attachment 3 - Design Comparison Table Scoring

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>Concept 2</th>
<th>Concept 3</th>
<th>Concept 4</th>
<th>Concept 5A</th>
<th>Concept 5B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>15</td>
<td>-4</td>
<td>-1</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>Cost</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cumulative Score</td>
<td>100</td>
<td>20</td>
<td>65</td>
<td>35</td>
<td>10</td>
<td>35</td>
</tr>
</tbody>
</table>

Criteria Weighting
- **Pedestrian Safety and Comfort**
- **Cycling Safety and Comfort**
- **Driving Safety and Comfort**
- **Parking and Loading**
- **Cost**
- **Network Impacts**
- **Encroachment Impacts**

Scoring
- **Worse** (-4)
- **Neutral** (0)
- **Better** (+4)
Attachment 3 - Design Comparison Table Scoring

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>Concept 6</th>
<th>Concept 7</th>
<th>Concept 8</th>
<th>Concept 9</th>
<th>Concept 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>15</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Cost</td>
<td>15</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>10</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>Cumulative Score</td>
<td>100</td>
<td>30</td>
<td>55</td>
<td>40</td>
<td>-40</td>
<td>55</td>
</tr>
</tbody>
</table>

Worse: -4
Neutral: 0
Better: +4
St Andrews Safety Improvement Project: Keith to 9th Street Improvements

Presented January 2024
Engineering, Parks and Environment
Agenda

1. Project Background
2. Design Evaluation and Comparison Process
3. Design Concept Short List
4. Recommended Design & Next Steps
Background
Project Objectives

1. Fill gaps in the sidewalk network
2. Align driver speeds with 30km/h speed limit to improve safety for all road users
3. Opportunity to build part of the Council approved Mobility Network
Project Background

- **July 2020**: Council motion to reduce the speed limit on St Andrews
- **April-July 2021**: Multi-phased public engagement process
- **July 2022**: Roadway changes to reduce driver speed implemented
- **March 2023**: Phase 3 engagement
- **July 2023**: Revised design brought to Council
Council Direction

1. Implement the revised design between 9th and 13th Streets

2. Explore further design opportunities between Keith Road and 9th Street
Council Direction

Revised design completed October 2023 looking north from 10th Street
Council’s thoughts for consideration

- Elevating the northbound mobility lane to clarify use
- Provide Protection for southbound mobility device users
- Explore corridor couplets to reduce the amount of space needed on any one street for mobility lanes
- Reconfigure the east side boulevard to shift mobility devices off street & return pared vehicles to the curb
- Options to use diverters to reduce vehicle volume
- Retain more curbside space to support business access
Evaluation Process

- Examine Possible Designs
- Design Evaluation & Comparison Process
- Recommended Design
Creating the Concepts

Neighbourhood Bike Route (Shared Lane)
Reducing volumes through vehicle diversion

On-road Separated Bike Lane
Reallocating space to other road users (road diet)

Off-road Separated Bike Lane
Building space for separated walking and rolling on the boulevard
Existing Road Condition

Existing condition looking north towards 8th Street
Design Evaluation & Comparison

Criteria

User Comfort and Safety
- Pedestrian
- Cyclist
- Driver

Parking and Loading

Cost

Network Changes

Encroachment Impacts

Weighting

User Comfort and Safety 50%

Network Impacts 10%

Cost 15%

Parking and Loading 15%

Enchroachment Impacts 10%
Criteria Weighting

NEIGHBOURHOOD BIKE ROUTE - SHARED TRAVEL LANE

<table>
<thead>
<tr>
<th>Concept 1A</th>
<th>Concept 1A+</th>
<th>Concept 1B</th>
<th>Concept 1B+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diverter Across NE to SW at E 8th St, Dedicated Travel Lanes in Both Directions Shared by Drivers and Cyclists</td>
<td>Diverter Across NE to SW at E 8th St, NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>Diverter Across NW to SE at E 8th St, Dedicated Travel Lanes in Both Directions Shared by Drivers</td>
<td>Diverter Across NW to SE at E 8th St, NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
</tr>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Cost</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

Reading the Design Comparison Table

- **Worse** (-4)
- **Neutral** (0)
- **Better** (+4)

Attachment 3
Design Evaluation & Comparison

<table>
<thead>
<tr>
<th>Concepts</th>
<th>1A</th>
<th>1A+</th>
<th>1B</th>
<th>1B+</th>
<th>1C</th>
<th>1C+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbourhood Bike Route (Shared Lane)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5A</td>
<td>5B</td>
<td></td>
</tr>
<tr>
<td>On-road Separated Bike Lane</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Off-road Separated Bike Lane</td>
<td>1A</td>
<td>1A+</td>
<td>1B</td>
<td>1B+</td>
<td>1C</td>
<td>1C+</td>
</tr>
</tbody>
</table>
Design Evaluation & Comparison

Concepts

Neighbourhood Bike Route (Shared Lane):
- 1A
- 1A+
- 1B
- 1B+
- 1C
- 1C+

On-road Separated Bike Lane:
- 2
- 3
- 4
- 5A
- 5B

Off-road Separated Bike Lane:
- 6
- 7
- 8
- 9
- 10
Short List

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>ON-ROAD SEPARATED BIKE LANE</th>
<th>OFF-ROAD SEPARATED BIKE LANE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concept 3</td>
<td>Concept 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>NB Off-road Separated Bike Lane, SB On-road Separated Bike Lane</td>
<td></td>
</tr>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>15</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>Cost</td>
<td>15</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>10</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>65</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>

Note: The table ranks the concepts based on various criteria with weighted scores. The highest score is 65 for the ON-ROAD SEPARATED BIKE LANE and 55 for the OFF-ROAD SEPARATED BIKE LANE.
Assumptions

• Mobility Strategy design objectives for a local street emphasize walking and rolling; in this context providing parking is important for the local community

• Substantial changes to neighbourhood network or property encroachments would be impactful and is not necessary at this time

• St Andrews is not a Mobility Network priority and a more complete corridor approach could happen in the future
Short List

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>ON-ROAD SEPARATED BIKE LANE</th>
<th>OFF-ROAD SEPARATED BIKE LANE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concept 3</td>
<td>Concept 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>NB Off-road Separated Bike Lane, SB On-road Separated Bike Lane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Scores:
- **On-road Separated Bike Lane:** 65
- **Off-road Separated Bike Lane:** 55
- **Concept 10:** 55
Short List

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weighting</th>
<th>ON-ROAD SEPARATED BIKE LANE</th>
<th>OFF-ROAD SEPARATED BIKE LANE</th>
<th>OFF-ROAD SEPARATED BIKE LANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concept 3 NB On-road Separated Bike Lane, SB Cyclists Share with Drivers</td>
<td>Concept 7 NB Off-road Separated Bike Lane, SB On-road Separated Bike Lane</td>
<td>Concept 10 NB and SB Off-road Separated Bike Lanes</td>
</tr>
<tr>
<td>Pedestrian Safety and Comfort</td>
<td>20</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Cycling Safety and Comfort</td>
<td>20</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Driving Safety and Comfort</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Parking and Loading</td>
<td>15</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Cost</td>
<td>15</td>
<td>0</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>Network Impacts</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Encroachment Impacts</td>
<td>10</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>65</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>
Recommended Design – Concept 3
Next Steps

• Return to Council on January 22nd, 2024 to receive direction
Thank you.